install.packages("rptR",repos="http://R-Forge.R-project.org") require(rptR) ?rpt rpt.aov, rpt.remlLMM and rpt.mcmcLMM are suitable for Gaussian (normally distributed) data. rpt.binomGLMM.add and rpt.binomGLMM.multi are suitable for binary and proportion data. rpt.poisGLMM.add and rpt.poisGLMM.multi are suitable for Poisson (count) data. rpt(y, groups, datatype="Gaussian", method="ANOVA") |
rpt.aov(y, groups) |
rpt(y, groups, datatype="Gaussian", method="REML") |
rpt.remlLMM(y, groups) |
rpt(y, groups, datatype="Gaussian", method="MCMC") |
rpt.mcmcLMM(y, groups) |
rpt(y, groups, datatype="binomial", method="GLMM.multi") |
rpt.binomGLMM.multi(y, groups) |
rpt(y, groups, datatype="binomial", method="GLMM.add") |
rpt.binomGLMM.add(y, groups) |
rpt(y, groups, datatype="count", method="GLMM.multi") |
rpt.poisGLMM.multi(y, groups) |
rpt(y, groups, datatype="count", method="GLMM.add") |
rpt.poisGLMM.add(y, groups) |
print(rpt.obj) str(rpt.obj) rpt.remlLMM.adj that allows the estimation of adjusted repeatabilites. The function requires
a formula argument, a grname argument and a data argument. This allows much greater flexibility for estimating adjusted
repeatabilites. The formula argument uses the same syntax as lmer and allows the specification of fixed and random effects. With only
one random effect, the function will return the same repeatability as the function rpt.remlLMM. The argument grname requires
a character string or a vector of character strings that match one or more of the random effects specified in the formula. The option to specify more than one
random effect allows estimating multiple variance components and their standard errors simultaneously. The data argument requires a
dataframe that contains the columns spefied in the fomula. The function rpt.remlLMM.adj can also be accessed via the wrapper function rpt.adj
(again using the formula, grname, data specification).rpt.adj family of functions into rpt, since this allows greater flexibility for
estiamting standard and adjusted repeatabilites.